Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 12(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38543884

ABSTRACT

The global vaccination campaign against SARS-CoV-2, the virus responsible for COVID-19, has been a monumental endeavor, marked by unprecedented collaboration between scientific researchers and pharmaceutical companies [...].

2.
J Virol ; 97(11): e0095323, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37877721

ABSTRACT

IMPORTANCE: To our knowledge, this is the first report delineating the activation of the master antioxidant defense during EBV latency. We show that EBV-triggered reactive oxygen species production activates the Keap1-NRF2 pathway in EBV-transformed cells, and LMP1 plays a major role in this event, and the stress-related kinase TBK1 is required for NRF2 activation. Moreover, we show that the Keap1-NRF2 pathway is important for cell proliferation and EBV latency maintenance. Our findings disclose how EBV controls the balance between oxidative stress and antioxidant defense, which greatly improve our understanding of EBV latency and pathogenesis and may be leveraged to opportunities toward the improvement of therapeutic outcomes in EBV-associated diseases.


Subject(s)
Antioxidants , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Latent Infection , Virus Latency , Humans , Antioxidants/metabolism , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/pathogenicity , Herpesvirus 4, Human/physiology , Kelch-Like ECH-Associated Protein 1/metabolism , Latent Infection/metabolism , Latent Infection/virology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Cell Proliferation
3.
J Med Virol ; 95(7): e28952, 2023 07.
Article in English | MEDLINE | ID: mdl-37455550

ABSTRACT

The presence of hepatitis B virus (HBV) covalently closed circular (ccc) DNA (cccDNA), which serves as a template for viral replication and integration of HBV DNA into the host cell genome, sustains liver pathogenesis and constitutes an intractable barrier to the eradication of chronic HBV infection. The current antiviral therapy for HBV infection, using nucleos(t)ide analogues (NAs), can suppress HBV replication but cannot eliminate integrated HBV DNA and episomal cccDNA. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 is a powerful genetic tool that can edit integrated HBV DNA and minichromosomal cccDNA for gene therapy, but its expression and delivery require a viral vector, which poses safety concerns for therapeutic applications in humans. In the present study, we used synthetic guide RNA (gRNA)/Cas9-ribonucleoprotein (RNP) as a nonviral formulation to develop a novel CRISPR/Cas9-mediated gene therapy for eradicating HBV infection. We designed a series of gRNAs targeting multiple specific HBV genes and tested their antiviral efficacy and cytotoxicity in different HBV cellular models. Transfection of stably HBV-infected human hepatoma cell line HepG2.2.15 with HBV-specific gRNA/Cas9 RNPs resulted in a substantial reduction in HBV transcripts. Specifically, gRNA5 and/or gRNA9 RNPs significantly reduced HBV cccDNA, total HBV DNA, pregenomic RNA, and HBV antigen (HBsAg, HBeAg) levels. T7 endonuclease 1 (T7E1) cleavage assay and DNA sequencing confirmed specific HBV gene cleavage and mutations at or around the gRNA target sites. Notably, this gene-editing system did not alter cellular viability or proliferation in the treated cells. Because of their rapid DNA cleavage capability, low off-target effects, low risk of insertional mutagenesis, and readiness for use in clinical application, these results suggest that synthetic gRNA/Cas9 RNP-based gene-editing can be utilized as a promising therapeutic drug for eradicating chronic HBV infection.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , DNA, Viral/genetics , DNA, Viral/metabolism , CRISPR-Cas Systems , Hepatitis B virus/genetics , Virus Replication , RNA/metabolism , RNA/pharmacology , DNA, Circular/genetics
4.
Viruses ; 15(5)2023 04 26.
Article in English | MEDLINE | ID: mdl-37243148

ABSTRACT

We have previously demonstrated mitochondrial dysfunction in aging CD4 T cells from antiretroviral therapy (ART)-controlled people living with HIV (PLWH). However, the underlying mechanisms by which CD4 T cells develop mitochondrial dysfunction in PLWH remain unclear. In this study, we sought to elucidate the mechanism(s) of CD4 T cell mitochondrial compromise in ART-controlled PLWH. We first assessed the levels of reactive oxygen species (ROS), and we observed significantly increased cellular and mitochondrial ROS levels in CD4 T cells from PLWH compared to healthy subjects (HS). Furthermore, we observed a significant reduction in the levels of proteins responsible for antioxidant defense (superoxide dismutase 1, SOD1) and ROS-mediated DNA damage repair (apurinic/apyrimidinic endonuclease 1, APE1) in CD4 T cells from PLWH. Importantly, CRISPR/Cas9-mediated knockdown of SOD1 or APE1 in CD4 T cells from HS confirmed their roles in maintaining normal mitochondrial respiration via a p53-mediated pathway. Reconstitution of SOD1 or APE1 in CD4 T cells from PLWH successfully rescued mitochondrial function as evidenced by Seahorse analysis. These results indicate that ROS induces mitochondrial dysfunction, leading to premature T cell aging via dysregulation of SOD1 and APE1 during latent HIV infection.


Subject(s)
CD4-Positive T-Lymphocytes , HIV Infections , Humans , Reactive Oxygen Species/metabolism , CD4-Positive T-Lymphocytes/metabolism , HIV Infections/drug therapy , HIV Infections/metabolism , Superoxide Dismutase-1/metabolism , Mitochondria/metabolism
5.
Front Cell Infect Microbiol ; 12: 1026293, 2022.
Article in English | MEDLINE | ID: mdl-36405960

ABSTRACT

T cells are crucial for controlling viral infections; however, the mechanisms that dampen their responses during viral infections remain incompletely understood. Here, we studied the role and mechanisms of mitochondrial topoisomerase 1 (Top1mt) inhibition in mitochondrial dysfunction and T cell dysregulation using CD4 T cells from patients infected with HCV or HIV and compared it with CD4 T cells from healthy individuals following treatment with Top1 inhibitor - camptothecin (CPT). We found that Top1mt protein levels and enzymatic activity are significantly decreased, along with Top1 cleavage complex (Top1cc) formation, in mitochondria of CD4 T cells from HCV- and HIV-infected patients. Notably, treatment of healthy CD4 T cells with CPT caused similar changes, including inhibition of Top1mt, accumulation of Top1cc in mitochondria, increase in PARP1 cleavage, and decrease in mtDNA copy numbers. These molecular changes resulted in mitochondrial dysfunction, T cell dysregulation, and programmed cell death through multiple signaling pathways, recapitulating the phenotype we detected in CD4 T cells from HCV- and HIV-infected patients. Moreover, treatment of CD4 T cells from HCV or HIV patients with CPT further increased cellular and mitochondrial reactive oxygen species (ROS) production and cell apoptosis, demonstrating a critical role for Top1 in preventing mtDNA damage and cell death. These results provide new insights into the molecular mechanisms underlying immune dysregulation during viral infection and indicate that Top1 inhibition during chronic HCV or HIV infection can induce mtDNA damage and T cell dysfunction. Thus, reconstituting Top1mt protein may restore the mtDNA topology and T cell functions in humans with chronic viral infection.


Subject(s)
HIV Infections , Hepatitis C , Humans , HIV Infections/metabolism , DNA, Mitochondrial/metabolism , DNA Damage , Mitochondria/metabolism
6.
Mol Immunol ; 152: 215-223, 2022 12.
Article in English | MEDLINE | ID: mdl-36379129

ABSTRACT

Identification of immunologic epitopes against SARS-CoV-2 is crucial for the discovery of diagnostic, therapeutic, and preventive targets. In this study, we used a pan-coronavirus peptide microarray to screen for potential B-cell epitopes and validated the results with peptide-based ELISA. Specifically, we identified three linear B-cell epitopes on the SARS-CoV-2 proteome, which were recognized by convalescent plasma from COVID-19 patients. Interestingly, two epitopes (S 809-823 and R1ab 909-923) strongly reacted to convalescent plasma collected at the early phase (< 90 days) of COVID-19 symptom onset, whereas one epitope (M 5-19) reacted to convalescent plasma collected > 90 days after COVID-19 symptom onset. Neutralization assays using antibody depletion with the identified spike (S) peptides revealed that three S epitopes (S 557-571, S 789-803, and S 809-823) elicited neutralizing antibodies in COVID-19 patients. However, the levels of virus-specific antibody targeting S 789-803 only positively correlated with the neutralizing rates at the early phase (<60 days) after disease onset, and the antibody titers diminished quickly with no correlation to the neutralizing activity beyond two months after recovery from COVID-19. Importantly, stimulation of peripheral blood mononuclear cells from COVID-19-recovered patients with these SARS-CoV-2 S peptides resulted in poor virus-specific B cell activation, proliferation, differentiation into memory B cells, and production of immunoglobulin G (IgG) antibodies, despite the B-cells being functionally competent as demonstrated by their response to non-specific stimulation. Taken together, these findings indicate that these newly identified SARS-CoV-2-specific B-cell epitopes can elicit neutralizing antibodies, with titers and/or neutralizing activities declining significantly within 2-3 months in the convalescent plasma of COVID-19 patients.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Epitopes, B-Lymphocyte , Spike Glycoprotein, Coronavirus , Leukocytes, Mononuclear , Antibodies, Viral , Antibodies, Neutralizing , COVID-19 Serotherapy
7.
Viruses ; 14(9)2022 08 28.
Article in English | MEDLINE | ID: mdl-36146709

ABSTRACT

The current antiretroviral therapy (ART) for human immunodeficiency virus (HIV) can halt viral replication but cannot eradicate HIV infection because proviral DNA integrated into the host genome remains genetically silent in reservoir cells and is replication-competent upon interruption or cessation of ART. CRISPR/Cas9-based technology is widely used to edit target genes via mutagenesis (i.e., nucleotide insertion/deletion and/or substitution) and thus can inactivate integrated proviral DNA. However, CRISPR/Cas9 delivery systems often require viral vectors, which pose safety concerns for therapeutic applications in humans. In this study, we used synthetic guide RNA (gRNA)/Cas9-ribonucleoprotein (RNP) as a non-viral formulation to develop a novel HIV gene therapy. We designed a series of gRNAs targeting different HIV genes crucial for HIV replication and tested their antiviral efficacy and cellular cytotoxicity in lymphoid and monocytic latent HIV cell lines. Compared with the scramble gRNA control, HIV-gRNA/Cas9 RNP-treated cells exhibited efficient viral suppression with no apparent cytotoxicity, as evidenced by the significant inhibition of latent HIV DNA reactivation and RNA replication. Moreover, HIV-gRNA/Cas9 RNP inhibited p24 antigen expression, suppressed infectious viral particle production, and generated specific DNA cleavages in the targeted HIV genes that are confirmed by DNA sequencing. Because of its rapid DNA cleavage, low off-target effects, low risk of insertional mutagenesis, easy production, and readiness for use in clinical application, this study provides a proof-of-concept that synthetic gRNA/Cas9 RNP drugs can be utilized as a novel therapeutic approach for HIV eradication.


Subject(s)
HIV Infections , HIV-1 , Antiviral Agents , CRISPR-Cas Systems , DNA , HIV-1/genetics , HIV-1/metabolism , Humans , Nucleotides/metabolism , Proviruses/genetics , RNA, Guide, Kinetoplastida/genetics , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Virus Latency
9.
Proteomics Clin Appl ; 16(5): e2200031, 2022 09.
Article in English | MEDLINE | ID: mdl-35929818

ABSTRACT

BACKGROUND: While the majority of COVID-19 patients fully recover from the infection and become asymptomatic, a significant proportion of COVID-19 survivors experience a broad spectrum of symptoms lasting weeks to months post-infection, a phenomenon termed "post-acute sequelae of COVID-19 (PASC)." The aim of this study is to determine whether inflammatory proteins are dysregulated and can serve as potential biomarkers for systemic inflammation in COVID-19 survivors. METHODS: We determined the levels of inflammatory proteins in plasma from 22 coronavirus disease 2019 (COVID-19) long haulers (COV-LH), 22 COVID-19 asymptomatic survivors (COV-AS), and 22 healthy subjects (HS) using an Olink proteomics assay and assessed the results by a beads-based multiplex immunoassay. RESULTS: Compared to HS, we found that COVID-19 survivors still exhibited systemic inflammation, as evidenced by significant changes in the levels of multiple inflammatory proteins in plasma from both COV-LH and COV-AS. CXCL10 was the only protein that significantly upregulated in COV-LH compared with COV-AS and HS. CONCLUSIONS: Our results indicate that several inflammatory proteins remain aberrantly dysregulated in COVID-19 survivors and CXCL10 might serve as a potential biomarker to typify COV-LH. Further characterization of these signature inflammatory molecules might improve the understanding of the long-term impacts of COVID-19 and provide new targets for the diagnosis and treatment of COVID-19 survivors with PASC.


Subject(s)
COVID-19 , Biomarkers , COVID-19/complications , Humans , Inflammation , SARS-CoV-2 , Survivors
10.
Front Oncol ; 12: 923009, 2022.
Article in English | MEDLINE | ID: mdl-35814476

ABSTRACT

Liver hepatocellular carcinoma (LIHC) is the major form of liver cancer that is the fourth most common cause of cancer death worldwide. It has been reported that the multifunctional protein p62 (also known as SQSTM1) plays a cancer-promoting role in LIHC, but the detailed mechanisms underlying p62 interaction with LIHC remains unclear. To gain a comprehensive understanding of p62 interaction with LIHC in clinical settings, we performed bioinformatic analyses using various online algorithms derived from high throughput profiling. Our results indicate that p62 expression is significantly upregulated, partially due to its promoter demethylation, rather than p62 gene mutation, in LIHC. Mutation of TP53, CTNNB1, or ALB significantly correlates with, and mutation of AXIN1 reversely correlates with, the p62 expression level. Its upregulation occurs as early as liver cirrhosis, and go through all stages of the carcinogenesis. HCV infection makes a significant contribution to p62 upregulation in LIHC. We further identified p62-associated molecular signatures in LIHC, including many genes that are involved in antioxidant stress and metabolism, such as SRX1 and TXNRD1. Regarding to the clinical outcome, p62 expression level reversely correlates with the survival of LIHC patients (p<0.01). Importantly, we experimentally validated that p62 depletion in liver cancer cell lines downregulates the expression of SRX1 and TXNRD1 at both transcriptional and translational levels, and reduces cell proliferation. As the potential mechanisms underlying the tumor-promoting role of p62, we show that p62 upregulation is remarkably associated with reprogramming of pathways mediated by p53, Wnt/ß-catenin, and Keap1-NRF2, which are crucial for oncogenesis in many contexts. Our findings provide a comprehensive insight into the interaction between p62 and LIHC, offering valuable information for understanding of LIHC pathogenesis.

11.
J Cell Sci ; 135(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35660868

ABSTRACT

We investigated the role of telomerase and telomere repeat-binding factor 2 (TRF2 or TERF2) in T-cell dysfunction in chronic viral infection. We found that the expression and activity of telomerase in CD4+ T (CD4T) cells from patients with hepatitis C virus (HCV) infections or people living with HIV (PLWH) were intact, but TRF2 expression was significantly inhibited at the post-transcriptional level, suggesting that TRF2 inhibition is responsible for the CD4T cell dysfunction observed during chronic viral infection. Silencing TRF2 expression in CD4T cells derived from healthy subjects induced telomeric DNA damage and CD4T cell dysfunction without affecting telomerase activity or translocation - similar to what we observed in CD4T cells from HCV patients and PLWH. These findings indicate that premature T-cell aging and dysfunction during chronic HCV or HIV infection are primarily caused by chronic immune stimulation and T-cell overactivation and/or proliferation that induce telomeric DNA damage due to TRF2 inhibition, rather than telomerase disruption. This study suggests that restoring TRF2 presents a novel approach to prevent telomeric DNA damage and premature T-cell aging, thus rejuvenating T-cell functions during chronic viral infection.


Subject(s)
CD4-Positive T-Lymphocytes , HIV Infections , Telomerase , Telomeric Repeat Binding Protein 2 , CD4-Positive T-Lymphocytes/immunology , DNA Damage , HIV Infections/genetics , HIV Infections/immunology , Hepacivirus , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/immunology , Humans , Telomerase/genetics , Telomerase/metabolism , Telomere , Telomeric Repeat Binding Protein 2/antagonists & inhibitors , Telomeric Repeat Binding Protein 2/genetics , Telomeric Repeat Binding Protein 2/metabolism
12.
Front Immunol ; 12: 760707, 2021.
Article in English | MEDLINE | ID: mdl-34956192

ABSTRACT

We have previously shown that chronic Hepatitis C virus (HCV) infection can induce DNA damage and immune dysfunctions with excessive oxidative stress in T cells. Furthermore, evidence suggests that HCV contributes to increased susceptibility to metabolic disorders. However, the underlying mechanisms by which HCV infection impairs cellular metabolism in CD4 T cells remain unclear. In this study, we evaluated mitochondrial mass and intracellular and mitochondrial reactive oxygen species (ROS) production by flow cytometry, mitochondrial DNA (mtDNA) content by real-time qPCR, cellular respiration by seahorse analyzer, and dysregulated mitochondrial-localized proteins by Liquid Chromatography-Mass Spectrometry (LC-MS) in CD4 T cells from chronic HCV-infected individuals and health subjects. Mitochondrial mass was decreased while intracellular and mitochondrial ROS were increased, expressions of master mitochondrial regulators peroxisome proliferator-activated receptor 1 alpha (PGC-1α) and mitochondrial transcription factor A (mtTFA) were down-regulated, and oxidative stress was increased while mitochondrial DNA copy numbers were reduced. Importantly, CRISPR/Cas9-mediated knockdown of mtTFA impaired cellular respiration and reduced mtDNA copy number. Furthermore, proteins responsible for mediating oxidative stress, apoptosis, and mtDNA maintenance were significantly altered in HCV-CD4 T cells. These results indicate that mitochondrial functions are compromised in HCV-CD4 T cells, likely via the deregulation of several mitochondrial regulatory proteins.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Hepatitis C, Chronic/immunology , Mitochondria/immunology , Adult , Aged , DNA, Mitochondrial , Female , Humans , Male , Middle Aged , Mitochondria/genetics , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/immunology , Reactive Oxygen Species/immunology , Young Adult
13.
Cancers (Basel) ; 13(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34771613

ABSTRACT

The Epstein-Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.

14.
Aging Cell ; 20(12): e13513, 2021 12.
Article in English | MEDLINE | ID: mdl-34752684

ABSTRACT

Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere erosion and mitochondrial injury, leading to impaired cellular functions and cell death. Whether oxidative stress-mediated telomere erosion induces mitochondrial injury, or vice versa, in human T cells-the major effectors of host adaptive immunity against infection and malignancy-is poorly understood due to the pleiotropic effects of ROS. Here we employed a novel chemoptogenetic tool that selectively produces a single oxygen (1 O2 ) only at telomeres or mitochondria in Jurkat T cells. We found that targeted 1 O2 production at telomeres triggered not only telomeric DNA damage but also mitochondrial dysfunction, resulting in T cell apoptotic death. Conversely, targeted 1 O2 formation at mitochondria induced not only mitochondrial injury but also telomeric DNA damage, leading to cellular crisis and apoptosis. Targeted oxidative stress at either telomeres or mitochondria increased ROS production, whereas blocking ROS formation during oxidative stress reversed the telomeric injury, mitochondrial dysfunction, and cellular apoptosis. Notably, the X-ray repair cross-complementing protein 1 (XRCC1) in the base excision repair (BER) pathway and multiple mitochondrial proteins in other cellular pathways were dysregulated by the targeted oxidative stress. By confining singlet 1 O2 formation to a single organelle, this study suggests that oxidative stress induces dual injury in T cells via crosstalk between telomeres and mitochondria. Further identification of these oxidation pathways may offer a novel approach to preserve mitochondrial functions, protect telomere integrity, and maintain T cell survival, which can be exploited to combat various immune aging-associated diseases.


Subject(s)
Mitochondria/metabolism , Oxidative Stress/genetics , T-Lymphocytes/metabolism , Telomere/metabolism , Humans
16.
mBio ; 12(5): e0109721, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34488443

ABSTRACT

The Epstein-Barr virus (EBV) protein LMP1 serves as a paradigm that engages complicated ubiquitination-mediated mechanisms to activate multiple transcription factors. p62 is a ubiquitin sensor and a signal-transducing adaptor that has multiple functions in diverse contexts. However, the interaction between p62 and oncogenic viruses is poorly understood. We recently reported a crucial role for p62 in oncovirus-mediated oxidative stress by acting as a selective autophagy receptor. In this following pursuit, we further discovered that p62 is upregulated in EBV type 3 compared to type 1 latency, with a significant contribution from NF-κB and AP1 activities downstream of LMP1 signaling. In turn, p62 participates in LMP1 signal transduction through its interaction with TRAF6, promoting TRAF6 ubiquitination and activation. As expected, short hairpin RNA (shRNA)-mediated knockdown (KD) of p62 transcripts reduces LMP1-TRAF6 interaction and TRAF6 ubiquitination, as well as p65 nuclear translocation, which was assessed by Amnis imaging flow cytometry. Strikingly, LMP1-stimulated NF-κB, AP1, and Akt activities are all markedly reduced in p62-/- mouse embryo fibroblasts (MEFs) and in EBV-negative Burkitt's lymphoma (BL) cell lines with CRISPR-mediated knockout (KO) of the p62-encoding gene. However, EBV-positive BL cell lines (type 3 latency) with CRISPR-mediated KO of the p62-encoding gene failed to survive. In consequence, shRNA-mediated p62 KD impairs the ability of LMP1 to regulate its target gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of lymphoblastic cell lines (LCLs). These important findings have revealed a previously unrecognized novel role for p62 in EBV latency and oncogenesis, which advances our understanding of the mechanism underlying virus-mediated oncogenesis. IMPORTANCE As a ubiquitin sensor and a signal-transducing adaptor, p62 is crucial for NF-κB activation, which involves the ubiquitin machinery, in diverse contexts. However, whether p62 is required for EBV LMP1 activation of NF-κB is an open question. In this study, we provide evidence that p62 is upregulated in EBV type 3 latency and, in turn, p62 mediates LMP1 signal transduction to NF-κB, AP1, and Akt by promoting TRAF6 ubiquitination and activation. In consequence, p62 deficiency negatively regulates LMP1-mediated gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of LCLs. These important findings identified p62 as a novel signaling component of the key viral oncogenic signaling pathway.


Subject(s)
Gene Expression Regulation , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , NF-kappa B/metabolism , Sequestosome-1 Protein/metabolism , Viral Matrix Proteins/genetics , Apoptosis , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Viral/genetics , Humans , Sequestosome-1 Protein/genetics , Signal Transduction , Viral Matrix Proteins/metabolism , Virus Latency
17.
Virus Res ; 304: 198508, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34329696

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 infection poses a serious threat to public health. An explicit investigation of COVID-19 immune responses, particularly the host immunity in recovered subjects, will lay a foundation for the rational design of therapeutics and/or vaccines against future coronaviral outbreaks. Here, we examined virus-specific T cell responses and identified T cell epitopes using peptides spanning SARS-CoV-2 structural proteins. These peptides were used to stimulate peripheral blood mononuclear cells (PBMCs) derived from COVID-19-recovered subjects, followed by an analysis of IFN-γ-secreting T cells by enzyme-linked immunosorbent spot (ELISpot). We also evaluated virus-specific CD4 or CD8 T cell activation by flow cytometry assay. By screening 52 matrix pools (comprised of 315 peptides) of the spike (S) glycoprotein and 21 matrix pools (comprised of 102 peptides) spanning the nucleocapsid (N) protein, we identified 28 peptides from S protein and 5 peptides from N protein as immunodominant epitopes. The immunogenicity of these epitopes was confirmed by a second ELISpot using single peptide stimulation in memory T cells, and they were mapped by HLA restrictions. Notably, SARS-CoV-2 specific T cell responses positively correlated with B cell IgG and neutralizing antibody responses to the receptor-binding domain (RBD) of the S protein. Our results demonstrate that defined levels of SARS-CoV-2 specific T cell responses are generated in some, but not all, COVID-19-recovered subjects, fostering hope for the protection of a proportion of COVID-19-exposed individuals against reinfection. These results also suggest that these virus-specific T cell responses may induce protective immunity in unexposed individuals upon vaccination, using vaccines generated based on the immune epitopes identified in this study. However, SARS-CoV-2 S and N peptides are not potently immunogenic, and none of the single peptides could universally induce robust T cell responses, suggesting the necessity of using a multi-epitope strategy for COVID-19 vaccine design.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , Pandemics , Spike Glycoprotein, Coronavirus/immunology , Adult , CD8-Positive T-Lymphocytes/cytology , COVID-19/epidemiology , Female , Humans , Immunodominant Epitopes/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Young Adult
18.
Hepatology ; 74(5): 2380-2394, 2021 11.
Article in English | MEDLINE | ID: mdl-34110660

ABSTRACT

BACKGROUND AND AIMS: Hepatitis C virus (HCV) leads to a high rate of chronic infection and T cell dysfunction. Although it is well known that chronic antigenic stimulation is a driving force for impaired T cell functions, the precise mechanisms underlying immune activation-induced T cell dysfunctions during HCV infection remain elusive. APPROACH AND RESULTS: Here, we demonstrated that circulating CD4+ T cells from patients who are chronically HCV-infected exhibit an immune activation status, as evidenced by the overexpression of cell activation markers human leukocyte antigen-antigen D-related, glucose transporter 1, granzyme B, and the short-lived effector marker CD127- killer cell lectin-like receptor G1+ . In contrast, the expression of stem cell-like transcription factor T cell factor 1 and telomeric repeat-binding factor 2 (TRF2) are significantly reduced in CD4+ T cells from patients who are chronically HCV-infected compared with healthy participants (HP). Mechanistic studies revealed that CD4+ T cells from participants with HCV exhibit phosphoinositide 3-kinase/Akt/mammalian target of rapamycin signaling hyperactivation on T cell receptor stimulation, promoting proinflammatory effector cell differentiation, telomeric DNA damage, and cellular apoptosis. Inhibition of Akt signaling during T cell activation preserved the precursor memory cell population and prevented inflammatory effector cell expansion, DNA damage, and apoptotic death. Moreover, knockdown of TRF2 reduced HP T cell stemness and triggered telomeric DNA damage and cellular apoptosis, whereas overexpression of TRF2 in CD4 T cells prevented telomeric DNA damage. CONCLUSIONS: These results suggest that modulation of immune activation through inhibiting Akt signaling and protecting telomeres through enhancing TRF2 expression may open therapeutic strategies to fine tune the adaptive immune responses in the setting of persistent immune activation and inflammation during chronic HCV infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , DNA Damage/immunology , Hepacivirus/genetics , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/immunology , Telomere/genetics , Adult , Aged , Apoptosis/genetics , Apoptosis/immunology , Cells, Cultured , DNA Damage/genetics , Female , Gene Knockdown Techniques/methods , Hepatitis C, Chronic/virology , Humans , Lymphocyte Activation , Male , Middle Aged , Persistent Infection/genetics , Persistent Infection/immunology , Persistent Infection/virology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Viral/genetics , Signal Transduction/genetics , Signal Transduction/immunology , TOR Serine-Threonine Kinases/metabolism , Telomeric Repeat Binding Protein 2/genetics , Telomeric Repeat Binding Protein 2/metabolism , Transduction, Genetic/methods , Young Adult
19.
Front Immunol ; 12: 658420, 2021.
Article in English | MEDLINE | ID: mdl-34017335

ABSTRACT

The hallmark of HIV/AIDS is a gradual depletion of CD4 T cells. Despite effective control by antiretroviral therapy (ART), a significant subgroup of people living with HIV (PLHIV) fails to achieve complete immune reconstitution, deemed as immune non-responders (INRs). The mechanisms underlying incomplete CD4 T cell recovery in PLHIV remain unclear. In this study, CD4 T cells from PLHIV were phenotyped and functionally characterized, focusing on their mitochondrial functions. The results show that while total CD4 T cells are diminished, cycling cells are expanded in PLHIV, especially in INRs. HIV-INR CD4 T cells are more activated, displaying exhausted and senescent phenotypes with compromised mitochondrial functions. Transcriptional profiling and flow cytometry analysis showed remarkable repression of mitochondrial transcription factor A (mtTFA) in CD4 T cells from PLHIV, leading to abnormal mitochondrial and T cell homeostasis. These results demonstrate a sequential cellular paradigm of T cell over-activation, proliferation, exhaustion, senescence, apoptosis, and depletion, which correlates with compromised mitochondrial functions. Therefore, reconstituting the mtTFA pathway may provide an adjunctive immunological approach to revitalizing CD4 T cells in ART-treated PLHIV, especially in INRs.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , HIV Infections/metabolism , HIV Infections/virology , HIV-1 , Mitochondria/metabolism , Adult , Aged , Antiretroviral Therapy, Highly Active , Apoptosis , Biomarkers , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Gene Expression , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/immunology , Humans , Male , Middle Aged , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism , Viral Load , Young Adult
20.
Front Oncol ; 11: 632638, 2021.
Article in English | MEDLINE | ID: mdl-33869018

ABSTRACT

Non-small-cell lung carcinoma (NSCLC) is the major type of lung cancer, which is among the leading causes of cancer-related deaths worldwide. LIMD1 was previously identified as a tumor suppressor in lung cancer, but their detailed interaction in this setting remains unclear. In this study, we have carried out multiple genome-wide bioinformatic analyses for a comprehensive understanding of LIMD1 in NSCLC, using various online algorithm platforms that have been built for mega databases derived from both clinical and cell line samples. Our results indicate that LIMD1 expression level is significantly downregulated at both mRNA and protein levels in both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), with a considerable contribution from its promoter methylation rather than its gene mutations. The Limd1 gene undergoes mutation only at a low rate in NSCLC (0.712%). We have further identified LIMD1-associated molecular signatures in NSCLC, including its natural antisense long non-coding RNA LIMD1-AS1 and a pool of membrane trafficking regulators. We have also identified a subgroup of tumor-infiltrating lymphocytes, especially neutrophils, whose tumor infiltration levels significantly correlate with LIMD1 level in both LUAD and LUSC. However, a significant correlation of LIMD1 with a subset of immune regulatory molecules, such as IL6R and TAP1, was only found in LUAD. Regarding the clinical outcomes, LIMD1 expression level only significantly correlates with the survival of LUAD (p<0.01) but not with that of LUSC (p>0.1) patients. These findings indicate that LIMD1 plays a survival role in LUAD patients at least by acting as an immune regulatory protein. To further understand the mechanisms underlying the tumor-suppressing function of LIMD1 in NSCLC, we show that LIMD1 downregulation remarkably correlates with the deregulation of multiple pathways that play decisive roles in the oncogenesis of NSCLC, especially those mediated by EGFR, KRAS, PIK3CA, Keap1, and p63, in both LUAD and LUSC, and those mediated by p53 and CDKN2A only in LUAD. This study has disclosed that LIMD1 can serve as a survival prognostic marker for LUAD patients and provides mechanistic insights into the interaction of LIMD1 with NSCLC, which provide valuable information for clinical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...